变化趋势:Graph Panel

Graph面板是最常用的一种可视化面板,其通过折线图或者柱状图的形式显示监控样本随时间而变化的趋势。Graph面板天生适用于Prometheus中Gauge和Counter类型监控指标的监控数据可视化。例如,当需要查看主机CPU、内存使用率的随时间变化的情况时,可以使用Graph面板。同时,Graph还可以非常方便的支持多个数据之间的对比。

Graph面板

Graph Panel与Prometheus

Graph Panel通过折线图或者柱状图的形式,能够展示监控样本数据在一段时间内的变化趋势,因此其天生适合Prometheus中的Counter和Gauge类型的监控指标的可视化,对于Histogram类型的指标也可以支持,不过可视化效果不如Heatmap Panel来的直观。

接下来,我们将尝试使用Graph Panel可视化Prometheus中常用的4中指标类型的监控指标。

使用Graph Panel可视化Counter/Gauge

Prometheus Counter可视化

Metrics:控制数据源

这里以可视化主机CPU使用率为例,选中Metrics选项

Metrics选项

如上所示,这里使用了如下PromQL查询主机的CPU使用率:

1 - (avg(irate(node_cpu{mode='idle'}[5m])) without (cpu))

根据当前Promtheus的数据采集情况,该PromQL会返回多条时间序列(在示例中会返回3条)。Graph Panel会从时间序列中获取样本数据,并绘制到图表中。 为了让折线图有更好的可读性,我们可以通过定义Legend format{{ instance }}控制每条线的图例名称:

使用Legend format模板化图例

在Graph Panel的Axes选项中可以控制图标的X轴和Y轴相关的行为,如下所示:

Axes:管理坐标轴

Axes选项

默认情况下,Y轴会直接显示当前样本的值,通过Left YUnit可以让Graph Panel自动格式化样本值。当前表达式返回的当前主机CPU使用率的小数表示,因此,这里选择单位为percent(0.0.-1.0)。除了百分比以外,Graph Panel支持如日期、货币、重量、面积等各种类型单位的自动换算,用户根据自己当前样本的值含义选择即可。

Legend:图例管理

除了在Metrics设置图例的显示名称以外,在Graph Panel的Legend选项可以进一步控制图例的显示方式,如下所示:

Legend选项

Options中可以设置图例的显示方式以及展示位置,Vlaues中可以设置是否显示当前时间序列的最小值,平均值等。 Decimals用于配置这些值显示时保留的小数位,如下所示:

Legend控制图例的显示示例

Display: 自定义图形展示

Display选项主要用于控制可视化图形的显示,包含三个部分:Draw options、Series overrides和Thresholds。

Display选项

Draw Options用于设置当前图标的展示形式、样式以及交互提示行为。其中,Draw Modes用于控制图形展示形式:Bar(柱状)、Lines(线条)、Points(点),用户可以根据自己的需求同时启用多种模式。Mode Options则设置各个展示模式下的相关样式。Hover tooltip用于控制当鼠标移动到图形时,显示提示框中的内容。

如果希望当前图表中的时间序列以不同的形式展示,则可以通过Series overrides控制,顾名思义,可以为指定的时间序列指定自定义的Draw Options配置,从而让其以不同的样式展示。例如:

Series overrides

这里定义了一条自定义规则,其匹配图例名称满足/localhost/的时间序列,并定义其以点的形式显示在图表中,修改后的图标显示效果如下:

Series overrides效果

Display选项中的最后一个是Thresholds,Threshold主要用于一些自定义一些样本的阈值,例如,定义一个Threshold规则,如果CPU超过50%的区域显示为warning状态,可以添加如下配置:

Threshold设置

Graph Panel则会在图表中显示一条阈值,并且将所有高于该阈值的区域显示为warining状态,通过可视化的方式直观的在图表中显示一些可能出现异常的区域。

需要注意的是,如果用户为该图表自定义了Alert(告警)配置,Thresholds将会被警用,并且根据Alert中定义的Threshold在图形中显示阈值内容。关于Alert的使用会在后续部分,详细介绍。

使用Graph Panel可视化Histogram

这里以Prometheus自身的监控指标prometheus_tsdb_compaction_duration为例,该监控指标记录了Prometheus进行数据压缩任务的运行耗时的分布统计情况。如下所示,是Prometheus返回的样本数据:

# HELP prometheus_tsdb_compaction_duration Duration of compaction runs.
# TYPE prometheus_tsdb_compaction_duration histogram
prometheus_tsdb_compaction_duration_bucket{le="1"} 2
prometheus_tsdb_compaction_duration_bucket{le="2"} 36
prometheus_tsdb_compaction_duration_bucket{le="4"} 36
prometheus_tsdb_compaction_duration_bucket{le="8"} 36
prometheus_tsdb_compaction_duration_bucket{le="16"} 36
prometheus_tsdb_compaction_duration_bucket{le="32"} 36
prometheus_tsdb_compaction_duration_bucket{le="64"} 36
prometheus_tsdb_compaction_duration_bucket{le="128"} 36
prometheus_tsdb_compaction_duration_bucket{le="256"} 36
prometheus_tsdb_compaction_duration_bucket{le="512"} 36
prometheus_tsdb_compaction_duration_bucket{le="+Inf"} 36
prometheus_tsdb_compaction_duration_sum 51.31017077500001
prometheus_tsdb_compaction_duration_count 36

在第2章的“Metric类型”小节中,我们已经介绍过Histogram的指标,Histogram用于统计样本数据的分布情况,其中标签le定义了分布桶Bucket的边界,如上所示,表示当前Promtheus共进行了36次数据压缩,总耗时为51.31017077500001ms。其中任务耗时在0~1ms区间内的为2次、在0~2ms区间范围内为36次,以此类推。

如下所示,如果需要在Graph中显示Histogram类型的监控指标,需要在Query Editor中定义查询结果的Format as为Heatmap。通过该设置Grafana会自动计算Histogram中的Bucket边界范围以及该范围内的值:

Metrics设置

Graph Panel重新计算了Bucket边界,如下所示,在0~1ms范围内的任务次数为2,在1~2ms范围内的运行任务次数为34。通过图形的面积,可以反映出各个Bucket下的大致数据分布情况:

Histogram数据可视化

不过通过Graph Panel展示Histogram也并不太直观,其并不能直接反映出Bucket的大小以及分布情况,因此在Grafana V5版本以后更推荐使用Heatmap Panel的方式展示Histogram样本数据。关于Heatmap Panel的使用将会在接下来的部分介绍。

powered by Gitbook 该教程制作时间: 2018-05-16 21:27:49